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Ice shelves fringe
most of the
Antarctic coastline

Only one extensive
ice shelf borders
Greenland (but fast
retreating), others
glaciers referred to as
marine terminating
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Buttressing prowess and recent thinning
The Marine Ice Sheet Instability
Analytical ice-shelf model

Ice shelves can provide buttressing against the flows of continental ice upstream
(often, but not always) depending on the stress budget
Vertical shear becomes ineffective, except near pinning points
Next in line are extensional stresses (neglected under SIA) and lateral stresses
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Buttressing prowess estimated from (instantaneous) changes in ice discharge
across grounding lines induced by 1 m thinning over 20 km × 20 km square (red)

Ice fluxes most sensitive to thinning near grounding lines and pinning points

Ice speed (gray shading for grounded ice) up to 1000 m/y

Black arrow shows tele-buttressing effect
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GL = grounding line; CDW =
Circumpolar deep water
(offshore)

Key point is TL(p,Sa)
decreases with p (about 1 C◦

per km vertical), i.e.,
retreating GL on retrograde
slope

CDW will melt near-GL areas,
which will reduce buttressing,
increasingly rapidly on
retrograde slopes
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Cooling seawater (blue/red) will generate a mixture of ideal solid with seawater at
liquidus conditions, i.e., Tb = λ1Sb + λ2 + λ3Pb

Mixing seawater (green) with ideal ice will generate a mixture of warmer ideal ice
with seawater at liquidus conditions
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Melting by a warm ambient
generates buoyant flows along
the ice-shelf base

They can be few meters thick

They themselves control melt
rates

Such buoyant flows can be
energized by subglacial
discharge (add. buoyancy
source)
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A state-of-the-art 1D plume model

This is sometimes used to compute melt rates in models that do not resolve the
cavity dynamics
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Homogeneous ambient Ta = −1.9 C◦ and Sa = 34.6 psu

Tilted dashed lines show TL(p, Sa) (middle) ⇒ above freezing everywhere

Horizontal dashed lines show observed melting/freezing transition (all)
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Faster thickening and flow for steeper slopes

Velocity maximum coincides with melt/freeze transition since buoyancy is lost
upon freezing (salt going up is more important than temperature going up)

entrainment and velocity are positively coupled (same pattern) as ė ⇒ melting ⇒
freshening ⇒ U ⇒ ė

slope effect on entrainment is stronger than on velocity as ė ∝ U sinα
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Plume S and T vs base (solid) or ambient (dashed)
Competition between warming/cooling from entrainment/melting
Supercooling ensues past the melt/freeze transition as warming from entrainment
and freezing is slower than increase of TL(Pb,Sb)
Melt/freeze transition occurs higher for steeper slopes because entrainment
increases with slope (quadratic) more quickly than ṁw and Tf (linear)
Melt (max and mean) increases with slope because entrainment is more efficient
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In a large cavity, the global circulation
is expected to be in geostrophic
balance (small Rossby number)

Thermal wind balance and positive
equatorward density gradients ∂yρ > 0
(saltier to the north) imply westward
flows (u < 0), to the left of the plume
(Coriolis f < 0), near the ice
(∂zu ∝ ∂yρ/f < 0), possibly turning
eastward at depth

The deep eastward flow draws in a
southward flow by friction within a
bottom Ekman layer, closing the
circulation

Bulk geostrophic flows tend to follow
isocontours of ice thickness as they
are non divergent (w = 0)
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Exhibits the ice pump mechanism
(melting at depth/freezing above
maintained by weak overturning)

Mixed layer velocity to the north
and west, as expected

Depth averaged velocity has non
zero zonal component because of
boundaries and cyclonic gyres

Outflow has two distinct tongues
of water extruding, one where the
plume stops ascending and one
due to ambient stratification

Broad weak inflow to the east and
energetic thin outflow to the west
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T 2 dependence faster than the T 3/2

dependence from the plume model

The difference comes from the scaling
of mixed layer (plume) speed with
buoyancy: primitive equation yields a
near-geostrophic linear scaling while
the plume model has a square root
scaling

In cases where the mixed layer
buoyancy is not controlled by the melt
rate but by external factors (e.g.
subglacial discharge or tidal currents)
the melt rate dependence on
temperature should be closer to linear
(melt-driven plume vs
convection-driven melt) 22 / 30
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Derivation of T -dependence of plume or geostrophic melt rate (Karthaus 2019 p110).
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Nucleus for European
Modeling of Ocean model
(NEMO) of Weddell Sea
WED025 (1/4◦)

Japanese Reanalysis for
driving oceans (JRA55-do)
provides surface forcing
conditions

Boundary conditions forced
from global model output
with JRA forcing

Mean melt rate scales linearly
with Antarctic slope current
salinity and quadratically with
temperature
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Clockwise (anti-C) around red (blue) patches
Outflows to the west of FIS and RIS, near inflows (usually running through bed
depressions)
FRIS is a cold cavity, implying large freezing areas
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Antarctic Circumpolar Current (ACC)
is an easterward flow driven by
westerlies and circling Antarctica

The Antarctic Slope Current is
counter to the ACC and overlies the
continental slope

It modulates the inflow of warm
offshore water (often referred to as
Circumpolar Deep Water or CDW)
onto the shelf
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The type of water filling up the cavity depends on the ASC, CDW properties but
also cavity geometry and sea-ice formation, which depends on winds
Mode 1 is driven by cold Dense Shelf Water (DSW), Mode 2 by warm (modified)
Circumpolar Deep Water (mCDW/CDW), and Mode 3 by surface waters
The outflow from the cavity is a mixture of glacial meltwater with DSW (Mode 1)
or mCDW (Mode 2); the mixture is called Ice Shelf Water (ISW) when its
temperature is below the surface freezing point 28 / 30
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Ex. of Mode 1-2 bifurcation
(wind driven)

Winds push sea ice

Open water (polynia)
generates new sea ice,
enhancing brine rejection and
HSSW densification

mWDW generates more melt,
yielding lighter HSSW
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Results obtained with a regional ocean model

Start from high wind/cold ocean conditions
(filled with HSSW)

Hysteresis unravelled from
decreasing/increasing winds experiment

Bifurcation observed only in some simulations
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