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Introduction



The prediction problem
Given the laws governing the evolution of a system and knowledge of the present 
(initial condition), can we predict the evolution of the system in the future?

The equations governing the behavior of geophysical flows (atmosphere, ocean) can 
be written in this form after discretization, with n very large.

Introduction Entropy and microstate counting Entropy Production and the Paltridge model Conclusion

Dynamics vs. Statistics

All those models are dynamical models:

Ẋ = F (X , t)

X0

X (T )

t

t = 0 t = T

Trajectories in phase space are di�cult to compute:

I The system is intrinsically chaotic

I Errors on X0

I Errors on F

Observations can help, when they are available (initial state, data assimilation).

·X = F(X), X ∈ ℝn

X(t) = ϕtX0

A natural example of such a problem for the atmosphere is weather forecasting.



The Founding Fathers of 
Modern Meteorology

Cleveland Abbe

By 1890, the American mete-
orologist Cleveland Abbe had
recognized that:

Meteorology is essentially the

application of hydrodynamics

and thermodynamics to the at-

mosphere.

Abbe proposed a mathematical
approach to forecasting.
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Cleveland Abbe

“Meteorology is essentially the 
application of hydrodynamics 
and thermodynamics to the 
atmosphere.” (1890)

Vilhelm Bjerknes

A more explicit analysis of
weather prediction was under-
taken by the Norwegian scien-
tist Vilhelm Bjerknes

He identified the two crucial
components of a scientific fore-
casting system:

I Analysis
I Integration

Prehistory 1890–1920 ENIAC Recreation PHONIAC

Vilhelm Bjerknes

Necessary and sufficient 
conditions for the solution of the 
forecasting problem (1904):
1. Knowledge of the initial state
2. Knowledge of the physical laws
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First forecast during WWI:

• By hand!

• 2 years!

• ΔP = 145 hPa in 6 hours!

Lewis Fry Richardson

Did not filter fast oscillations! (gravity waves)



The birth of Numerical 
Weather Prediction

Richardson’s forecast factory: 64000 human computers



The First (Successful) 
Weather Forecast

S V E N S K A  G E O F Y S I S K A  F O R E N I N G E N  
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A Q U A R T E R L Y  I O U R N A L  O F  G E O P H Y S I C S  

Numerical Integration of the Barotropic Vorticity Equation 

By J. G. CHARNEY, R. FJORTOFT", J. von NEUMANN 
The Institute for Advanced Study, Princeton, Ncw Jersey2 

(Manuscript received I November 1950) 

Abstract 
A method is given for  the numerical solution of the barotropic vortiLity equation 

over a limited area of the earth's surface. T h e  lack of a natural boundary calls for  an 
investigation of the appropriate boundary conditions. These are determined by  a 
heuristic argument  and are shown to be sufficient i n  a special case. Approximate 
conditions necessary to insure the inathematical stability of the differcnce equation 
are derived. T h e  results of a series of four  z4-hour forecasts computed  f r o m  actual 
data at the 5 0 0  m b  level are presentcd, together with an  interpretation and analysis. 
An at tempt  is made to determine the causes of the forecast errors. These arc ascribed 
partly to the use of too  large a space increment  and partly t o  the effects of baroclinicity. 
T h e  rBle of the latter is investigated i n  some detail by  means of a simple baroclinic model. 

I. Introduction 
Tlvo years ago the Meteorological Research 

Group at the Institute for Advanced Study 
adopted the general plan of attacking the 
problem of numerical weather prediction by 
a step by step investigation of a series of models 
approximating more and more the real state 
of the atmosphere. In accordance with this 
plan the twodimensional barotropic model 
was chosen as the first object of study. The 
first two publications3 dealt with the numerical 
properties of the linearized barotropic equa- 
tions as a preparation for the numerical integra- 
tion of the non-linear equations. Such integra- 

O n  leave froin Det  Norske Meteorologiske 

2 This w o r k  was prepared under  Contract  

CHARNEY (1949). CHARNEY and ELIASSEN (1949). 

Institutt, Oslo, Norway.  

h--6-ori-I 39 with the Office of Naval Research. 

16-,'1~~;1~0 

tions have now been performed and will be 
described in the present article. 

These integrations would not have been 
possible without the use of a high-speed large- 
capacity computing instrument. We  should 
lke, therefore, to express our warmest thanks 
to the U. S. Army Ordnance Department and 
the administration of the Ballistic Research 
Laboratories in Aberdeen, Maryland for 
having generously given us the use of their 
electronic computing machine (The Eniac 
[compare footnote 51). The request for the 
use of the Eniac was made on our behalf by 
the U. S .  Weather Bureau and we should like 
to thank them also for their gratifying in- 
terest and support. 

The reasons for regarding the integration 
of the barotropic equations as an essential 

Charney Fjørtoft von Neumann

Numerical integration of the barotropic vorticity equation
Tellus, 2, 237–254 (1950).
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• Single layer of fluid 
• Conservation of potential vorticity 

dζ
dt

= 0, ζ = ∇ × v + f

The ENIAC machine

First multi-purpose programmable 
electronic digital computer

Electronic Numerical Integrator And Computer



Miniaturization….PHONIAC: Portable Hand Operated
Numerical Integrator and Computer

Prehistory 1890–1920 ENIAC Recreation PHONIAC

Weather, November 2008

Prehistory 1890–1920 ENIAC Recreation PHONIAC

Weather, 2008

237 MFLOPS

ENIAC: ~5 kFLOPS



Weather forecasting skill

REVIEW
doi:10.1038/nature14956

The quiet revolution of numerical
weather prediction
Peter Bauer1, Alan Thorpe1 & Gilbert Brunet2

Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady
accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions,
have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical
weather prediction is among the greatest of any area of physical science. As a computational problem, global weather
prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is
performed every day at major operational centres across the world.

A t the turn of the twentieth century, Abbe1 and Bjerknes2 pro-
posed that the laws of physics could be used to forecast the
weather; they recognized that predicting the state of the atmo-

sphere could be treated as an initial value problem of mathematical
physics, wherein future weather is determined by integrating the gov-
erning partial differential equations, starting from the observed current
weather. This proposition, even with the most optimistic interpretation
of Newtonian determinism, is all the more audacious given that, at that
time, there were few routine observations of the state of the atmosphere,
no computers, and little understanding of whether the weather possesses
any significant degree of predictability. But today, more than 100 years
later, this paradigm translates into solving daily a system of nonlinear
differential equations at about half a billion points per time step between
the initial time and weeks to months ahead, and accounting for dynamic,
thermodynamic, radiative and chemical processes working on scales
from hundreds of metres to thousands of kilometres and from seconds
to weeks.

A touchstone of scientific knowledge and understanding is the ability
to predict accurately the outcome of an experiment. In meteorology, this
translates into the accuracy of the weather forecast. In addition, today’s
numerical weather predictions also enable the forecaster to assess quan-
titatively the degree of confidence users should have in any particular
forecast. This is a story of profound and fundamental scientific success
built upon the application of the classical laws of physics. Clearly the
success has required technological acumen as well as scientific advances
and vision.

Accurate forecasts save lives, support emergency management and
mitigation of impacts and prevent economic losses from high-impact
weather, and they create substantial financial revenue—for example, in
energy, agriculture, transport and recreational sectors. Their substantial
benefits far outweigh the costs of investing in the essential scientific
research, super-computing facilities and satellite and other obser-
vational programmes that are needed to produce such forecasts3.

These scientific and technological developments have led to increas-
ing weather forecast skill over the past 40 years. Importantly, this skill
can be objectively and quantitatively assessed, as every day we compare
the forecast with what actually occurs. For example, forecast skill in the
range from 3 to 10 days ahead has been increasing by about one day per
decade: today’s 6-day forecast is as accurate as the 5-day forecast ten
years ago, as shown in Fig. 1. Predictive skill in the Northern and
Southern hemispheres is almost equal today, thanks to the effective

use of observational information from satellite data providing global
coverage.

More visible to society, however, are extreme events. The unusual
path and intensification of hurricane Sandy in October 2012 was pre-
dicted 8 days ahead, the 2010 Russian heat-wave and the 2013 US cold
spell were forecast with 1–2 weeks lead time, and tropical sea surface
temperature variability following the El Niño/Southern Oscillation phe-
nomenon can be predicted 3–4 months ahead. Weather and climate
prediction skill are intimately linked, because accurate climate predic-
tion needs a good representation of weather phenomena and their stat-
istics, as the underlying physical laws apply to all prediction time ranges.

This Review explains the fundamental scientific basis of numerical
weather prediction (NWP) before highlighting three areas from which
the largest benefit in predictive skill has been obtained in the past—
physical process representation, ensemble forecasting and model initi-
alization. These are also the areas that present the most challenging
science questions in the next decade, but the vision of running
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Figure 1 | A measure of forecast skill at three-, five-, seven- and ten-day
ranges, computed over the extra-tropical northern and southern
hemispheres. Forecast skill is the correlation between the forecasts and the
verifying analysis of the height of the 500-hPa level, expressed as the anomaly
with respect to the climatological height. Values greater than 60% indicate
useful forecasts, while those greater than 80% represent a high degree of
accuracy. The convergence of the curves for Northern Hemisphere (NH) and
Southern Hemisphere (SH) after 1999 indicates the breakthrough in exploiting
satellite data through the use of variational data100.

1European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, UK. 2Environment Canada, Trans-Canada Highway Dorval, Québec H9P 1J3, Canada.

G2015 Macmillan Publishers Limited. All rights reserved
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Main questions
• Can we predict the evolution of geophysical flows arbitrarily 

far in time? 

• If not, what is the predictability limit and what are the 
processes which determine it? 

• Are some states (regions of phase space) more predictable 
than others? Why? 

• Are operational forecasts close to the predictability limit? How 
to mitigate the impact of unpredictability in practice? 

• Can we still make probabilistic predictions beyond the limit of 
deterministic predictability?



Outline
I.Fundamental concepts 

1.Model error 

2.Sensitive dependence on initial condition 

3.Different notions of predictability 

II.Weather forecasting 

1.The limit of predictability for the atmosphere 

2.Data assimilation 

3.Ensemble forecasting 

III.Climate Prediction 

1.Slow degrees of freedom 

2.Sensitive dependence on initial condition



I. Fundamental concepts 
1. Model error



Filtering fast oscillations
6 1 Historical overview of numerical weather prediction

About one day

Figure 1.2.1: Schematic of a forecast with slowly varying weather-related variations
and superimposed high-frequency gravity waves. Note that even though the forecast
of the slow waves is essentially unaffected by the presence of gravity waves, the
initial time derivative is much larger in magnitude, as obtained in the Richardson
(1922) experiment.

(Chapter 3) which requires that the time step should be smaller than the grid size
divided by the speed of the fastest traveling signal (in this case horizontally moving
sound waves, traveling at about 300 m/s).

Charney (1948, 1949) and Eliassen (1949) solved both of these problems by
deriving “filtered” equations of motion, based on quasi-geostrophic (slowly varying)
balance, which filtered out (i.e., did not include) gravity and sound waves, and were
based on pressure fields alone. Charney points out that this approach was justified by
the fact that forecasters’ experience was that they were able to predict tomorrow’s
weather from pressure charts alone:

In the selection of a suitable first approximation, Richardson’s discovery that
the horizontal divergence was an unmeasurable quantity had to be taken into
account. Here a consideration of forecasting practice gave rise to the belief that
this difficulty could be surmounted: forecasts were made by means of
geostrophic reasoning from the pressure field alone – forecasts in which the
concept of horizontal divergence played no role.

In order to understand better Charney’s comment, we quote an anecdote from
Lorenz (1990) on his interactions with Jule Charney:

On another3 occasion when our conversations had turned closer to scientific
matters, Jule was talking again about the early days of NWP. For a proper

3 The previous occasion was a story about an invitation Charney received to appear on the
“Today” show, to talk about how computers were going to forecast the weather. Since the show
was at 7 am, Charney, a late riser, had never watched it. “He told us that he felt that he ought to
see the show at least once before agreeing to appear on it, and so, one morning, he managed to
pull himself out of bed and turn on the TV set, and the first person he saw was a chimpanzee.

Kalnay, Atmospheric Modeling, Data Assimilation and Predictability



Filtered equations

• Fully-compressible Navier-Stokes


• Boussinesq, anelastic -> no sound waves


• quasi-geostrophic -> no internal waves



Unresolved phenomena
A multiscale challenge

mm 10000 km1000 km1 km 10 km 100 km100 m10 m

DNS
Large Eddy Simulation (LES) models

Cloud resolving models

Numerical Weather Prediction (NWP) models

Global Climate Models (GCM)
SUBGRID

Cloud microphysics
Turbulence Cumulus clouds Cumulonimbus clouds

Mesoscale 

Convective systems
Extratropical cyclones Planetary waves

Ø All scales and processes interact…

Ø …but no single model can encompass all relevant processes.

Ø All models require parameterisations for subgrid-scale processes.

Ø For weather and climate models, this includes turbulence and land surface exchanges (heat, momentum, water) 

Source: N. Vercauteren

There will always be model error!



“Turing test” for Climate Models
Can you tell the difference between a 
human and an artificial intelligence?

1912-1954 🇬🇧

Stevens et al. Progress in Earth and Planetary Science            (2019) 6:61 Page 8 of 17

Fig. 2 Snapshot of DYAMONDmodels. A snapshot of the models taken from the perspective of the Himawari 8 is shown. The images are for the
cloud scene on 4 August 2016 and are qualitatively rendered based on each model’s condensate fields to illustrate the variety of convective
structures resolved by the models and difficulty of distinguishing them from actual observations. From left to right: IFS-4 km, IFS-9 km, and NICAM
(top row); ARPEGE, Himawari, and ICON (second row); FV3, GEOS5, and UKMO (third row); and SAM and MPAS (bottom row)

Stevens et al. (2019)

Global cloud-
resolving models

Palmer (2016)



I. Fundamental concepts 
2. Sensitive dependence 

on initial condition



Sensibilité aux conditions initiales

Pourquoi les météorologistes ont-ils tant de peine à prédire le temps 
avec quelque certitude ? Pourquoi les chutes de pluie, les tempêtes 
elles-mêmes nous semblent-elles arriver au hasard, de sorte que bien 
des gens trouvent tout naturel de prier pour avoir la pluie ou le beau 
temps, alors qu’ils jugeraient ridicule de demander une éclipse par 
une prière ? [...] un dixième de degré en plus ou en moins en un point 
quelconque, le cyclone éclate ici et non pas là, et il étend ses ravages 
sur des contrées qu’il aurait épargnées. Si on avait connu ce dixième 
de degré, on aurait pu le savoir à l’avance, mais les observations 
n’étaient ni assez serrées, ni assez précises, et c’est pour cela que 
tout semble dû à l’intervention du hasard.

H. Poincaré, Science et Méthode, Paris, 1908



The Lorenz equations

E. Lorenz (1963)



The Lorenz equations

E. Lorenz (1963)

Spectral truncation of equations for Rayleigh-Bénard convection

dx
dt

= σ(y − x),

dy
dt

= rx − y − xz,

dz
dt

= xy − bz .  (x, z, t) = X(t) sinx sin z

T (x, z, t) = Y (t) cos x sin z � Z(t) sin 2z

Saltzman (1962)



Sensitive dependence on initial 
conditions

E. Lorenz (1963)

http://www.chaos-math.org

dx
dt

= σ(y − x),

dy
dt

= rx − y − xz,

dz
dt

= xy − bz .
Trajectories with arbitrarily close initial conditions diverge 
after a finite time.

http://www.chaos-math.org


The Lorenz attractor

E. Lorenz (1963)

http://www.chaos-math.org

dx
dt

= σ(y − x),

dy
dt

= rx − y − xz,

dz
dt

= xy − bz .
Trajectories with any initial condition converge to a (zero-
volume) set in phase space, called “strange attractor”.

http://www.chaos-math.org


The Lorenz attractor

E. Lorenz (1963)

http://www.chaos-math.org

dx
dt

= σ(y − x),

dy
dt

= rx − y − xz,

dz
dt

= xy − bz .
The stationary probability density function does not depend on 
the initial condition.

http://www.chaos-math.org


I. Fundamental concepts 
3. Different notions of 

predictability



Is climate predictable?
PHENOMENA

Climate_Book August 1, 2018 6x9
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Figure 1.1: Surface air temperature in the annual mean (top), DJF mean (mid-
dle), and JJA mean (bottom). As is common practice in meteorology, surface
temperature here is defined as the temperature at 2-m height above the surface.

around 5000 m) and the ice sheets of Greenland and Antarctica (mean eleva-
tions around 2000 m) have lower surface air temperatures than surrounding
lower elevations. Annual-mean temperatures below the freezing point of water
(273.15 K) are found poleward of⇠60� latitude. This is the region of permafrosts,
as the annual cycle in the ground is gradually attenuated with depth, so that the
temperature beneath ⇠7 m depth is approximately equal to the annual-mean
temperature.3 Where the annual-mean temperature is below freezing, soil re-
mains frozen year-round, beneath a top layer that may thaw seasonally. The
global- and annual-mean surface air temperature is about 288 K.

The annual-mean surface air temperatures are generally similar to those
during the equinox seasons (spring and fall). Because it is the case for many

Source: T. Schneider

“Climate is what you expect, weather is what you get.”

A climate model with different initial conditions gives the same climatology.



Is climate predictable?

Here the questions we are interested in are of the type: how do the statistics change 
when some control parameter (e.g. CO2) changes?

IPCC AR6



Is climate predictable?

• The multi-model mean reproduces quite well the historical temperature anomaly 
• There is significant inter-model variability

IPCC AR5 Chap. 9

768

Chapter 9 Evaluation of Climate Models

9

Figure 9.8 |  Observed and simulated time series of the anomalies in annual and global mean surface temperature. All anomalies are differences from the 1961–1990 time-mean 
of each individual time series. The reference period 1961–1990 is indicated by yellow shading; vertical dashed grey lines represent times of major volcanic eruptions. (a) Single 
simulations for CMIP5 models (thin lines); multi-model mean (thick red line); different observations (thick black lines). Observational data (see Chapter 2) are Hadley Centre/Climatic 
Research Unit gridded surface temperature data set 4 (HadCRUT4; Morice et al., 2012), Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP; Hansen et 
al., 2010) and Merged Land–Ocean Surface Temperature Analysis (MLOST; Vose et al., 2012) and are merged surface temperature (2 m height over land and surface temperature 
over the ocean). All model results have been sub-sampled using the HadCRUT4 observational data mask (see Chapter 10). Following the CMIP5 protocol (Taylor et al., 2012b), all 
simulations use specified historical forcings up to and including 2005 and use RCP4.5 after 2005 (see Figure 10.1 and note different reference period used there; results will differ 
slightly when using alternative RCP scenarios for the post-2005 period). (a) Inset: the global mean surface temperature for the reference period 1961–1990, for each individual 
model (colours), the CMIP5 multi-model mean (thick red), and the observations (thick black: Jones et al., 1999). (Bottom) Single simulations from available EMIC simulations (thin 
lines), from Eby et al. (2013). Observational data are the same as in (a). All EMIC simulations ended in 2005 and use the CMIP5 historical forcing scenario. (b) Inset: Same as in (a) 
but for the EMICs.

results demonstrate a level of consistency between the EMICs with both 
the observations and the CMIP5 ensemble. 

In summary, there is very high confidence that models reproduce the 
general features of the global-scale annual mean surface temperature 

increase over the historical period, including the more rapid warming 
in the second half of the 20th century, and the cooling immediately 
following large volcanic eruptions. The disagreement apparent over the 
most recent 10 to 15 years is discussed in detail in Box 9.2. 



Projections pour la température 
de surface moyenne

SPM

 Summary for Policymakers

21

Figure SPM.7 |  CMIP5 multi-model simulated time series from 1950 to 2100 for (a) change in global annual mean surface temperature relative to 
1986–2005, (b) Northern Hemisphere September sea ice extent (5-year running mean), and (c) global mean ocean surface pH. Time series of projections 
and a measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). Black (grey shading) is the modelled historical evolution 
using historical reconstructed forcings. The mean and associated uncertainties averaged over 2081−2100 are given for all RCP scenarios as colored verti-
cal bars. The numbers of CMIP5 models used to calculate the multi-model mean is indicated. For sea ice extent (b), the projected mean and uncertainty 
(minimum-maximum range) of the subset of models that most closely reproduce the climatological mean state and 1979 to 2012 trend of the Arctic sea 
ice is given (number of models given in brackets). For completeness, the CMIP5 multi-model mean is also indicated with dotted lines. The dashed line 
represents nearly ice-free conditions (i.e., when sea ice extent is less than 106 km2 for at least five consecutive years). For further technical details see the 
Technical Summary Supplementary Material {Figures 6.28, 12.5, and 12.28–12.31; Figures TS.15, TS.17, and TS.20}

6.0

4.0

2.0

−2.0

0.0

(o C
)

42
32

39

historical
RCP2.6
RCP8.5

Global average surface temperature change(a)

R
C

P2
.6

 
R

C
P4

.5
 

R
C

P6
.0

 R
C

P8
.5

 

Mean over
2081–2100

1950 2000 2050 2100

Northern Hemisphere September sea ice extent(b)

R
C

P2
.6

 
R

C
P4

.5
 

R
C

P6
.0

 
R

C
P8

.5
 

1950 2000 2050 2100

10.0

8.0

6.0

4.0

2.0

0.0

(1
06  k

m
2 )

29 (3)

37 (5)

39 (5)

1950 2000 2050 2100

8.2

8.0

7.8

7.6

(p
H

 u
ni

t)

12

9

10

Global ocean surface pH(c)

R
C

P2
.6

 
R

C
P4

.5
 

R
C

P6
.0

 
R

C
P8

.5
 

Year

IPCC AR5 SPM

Dans ces projections, le modèle est un outil de prospective.

(relative to 1986-2005)



Incertitudes aux différentes 
échelles de temps

• Incertitude sur la variabilité interne du système climatique  
Domine aux temps courts (10 premières années)


• Incertitude sur la réponse au forçage (e.g. rétroactions due aux nuages) 
Domine aux temps intermédiaires (entre 10 et 30 ans)


• Incertitude sur le forçage (e.g. émissions de CO2 à venir)  
Domine aux temps longs (à partir de 2050)

979

Near-term Climate Change: Projections and Predictability Chapter 11

11
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Figure 11.8 |  Sources of uncertainty in climate projections as a function of lead time based on an analysis of CMIP5 results. (a) Projections of global mean decadal mean surface 
air temperature to 2100 together with a quantification of the uncertainty arising from internal variability (orange), model spread (blue) and RCP scenario spread (green). (b) Signal-
to-uncertainty ratio for various global and regional averages. The signal is defined as the simulated multi-model mean change in surface air temperature relative to the simulated 
mean surface air temperature in the period 1986–2005, and the uncertainty is defined as the total uncertainty. (c–f) The fraction of variance explained by each source of uncertainty 
for: global mean decadal and annual mean temperature (c), European (30°N to 75°N, 10°W to 40°E) decadal mean boreal winter (December to February) temperature (d) and 
precipitation (f), and East Asian (5°N to 45°N, 67.5°E to 130°E) decadal mean boreal summer (June to August) precipitation (e). See text and Hawkins and Sutton (2009) and 
Hawkins and Sutton (2011) for further details.



Different notions of 
predictability

IPCC AR5

We will first consider problems which are a priori deterministic, like 
weather forecasting, then intrinsically probabilistic predictions which 
still depend on the initial condition (climate prediction). We will not 
discuss climate projections here.



II. Weather forecasting 
1. The limit of predictability 

for the atmosphere



Growth-rate of the error

Lorenz, Tellus (1969)

“Dynamical-empirical” approach

• Each scale of motion has a finite predictability horizon 
• Halving small-scale error does not appreciably increase large-scale 

predictability

Energy spectrum of the flow

Energy spectrum of the error



Error growth in a turbulent 
cascade

Big whorls have little whorls,
Which feed on their velocity,
And little whorls have lesser whorls,
And so on to viscosity.

Richardson pictured that small vortices obtain their energy from break-ups of
larger ones, only to find themselves breaking to even smaller ones, and so on in a
self-similar way, see Fig. 2.1. The largest vortices in the Richardson cascade
picture obtain their energy from an external forcing (e.g. a mechanical forcing or
an instability mechanism to release the internal energy into the kinetic one) and the
smallest vortices are dissipated by viscosity [2]. The total rate of the energy
injection at large scales is equal on average to the energy dissipation rate at small
scales, so that a statistically steady turbulent state forms.

The Richardson cascade is best represented in Fourier k-space, see Fig. 2.2.
Here, the lengthscale is 1/k (where k = |k|), so that we have our turbulence source
at small kf, and the energy cascade is in the positive k-direction towards the
dissipation scale at large kv.

2.1.2 Kolmogorov–Obukhov Theory

In 1941, Kolmogorov [3, 4] and Obukhov [5] introduced the universality
hypothesis for the inertial range, i.e. for kf ! k ! kv. The idea is that far away
from the source and the sink turbulence properties only depend on the energy
cascade rate (equal to the energy dissipation rate in the steady state), and not on
details of the forcing or the dissipation of energy. This is because the Richardson

Energy injection

Viscous dissipation

Fig. 2.1 Richardson’s
energy cascade

2.1 Basic Facts about Hydrodynamic Turbulence 19

• Error initially confined to small scales: 
ki >> 1 

• Error growth through local (in scale) 
nonlinear interactions: time to propagate 
from k to 2k is the eddy-turnover time 

• Total time to reach scale kf:

τNL = [k3E(k)]−1/2

T = ∫
k1

kf

[k3E(k)]1−/2d(ln k)

• 3D homogeneous isotropic turbulence: 

• 2D turbulence (enstrophy cascade): 

E(k) = CKε2/3k−5/3, T ∼ ε−1/3 (k−2/3
f − k−2/3

i ) → ε−1/3k−2/3
f  as ki → + ∞

E(k) = Cη2/3k−3, T ∼ η−1/3 ln (ki /kf) → + ∞ as ki → + ∞

Finite predictability!



Error growth through non-
local interaction

Small-scale error (amplitude Ai at wave number ki) interacts directly with large-
scale field. The large-scale error grows exponentially; assume the growth rate is 
the inverse of the large-eddy turnover time. 

 

The error saturates when 

Af ∼ Aiet/τNL(kf ),  with A ∼ E(k)

E(kf ) ∼ E(ki)eT/τNL(kf )

• 3D homogeneous isotropic turbulence: 

• 2D turbulence (enstrophy cascade): 

E(k) = CKε2/3k−5/3, T ∼ ε−1/3k−2/3
f ln(ki /kf )

E(k) = Cη2/3k−3, T ∼ η−1/3 ln (ki /kf)
Cascade mechanism dominates in 3D, not necessarily in 2D (scale-independent eddy-

turnover time)



Application to the 
AtmosphereMaster 2 Physique ENS de Lyon Mécanique des fluides avancée et turbulence
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FIG. 3. Variance power spectra of wind and potential temperature near the tropopause from

GASP aircraft data. The spectra for meridional wind and temperature are shifted one and two
decades to the right, respectively; lines with slopes —3 and —
5
/
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coordinates for each variable for comparison.

then subtracted from all observations on the next leg.
The analysis was then made using the normalized
temperature data.

On selected flights the GASP system was set to
record data at 4-second (about 1 km) intervals, rather
than at 5-minute intervals. Data from the 97 high
density recording flights were analyzed as segments.
Each segment was 150 km long; i f  over five data
points were missing during any minute, that segment
was not used. Also, if  the altitude changed more than
100 m along a segment, then that segment was not
used. There were 1492 segments retained for analysis
and the average latitude of these data is about 30'N.
For each variable on each segment, the mean and a
linear trend were removed, and then the Fast Fourier
Transform was applied. The results over all segments
were averaged and plotted in Fig. 3.

Standard deviations o f  the results in  Fig. 3  are
about the same magnitude as the mean values. The
error bars are plotted to extend above and below the
mean two times the standard deviation divided by
the square root of the number of flights used to form
the mean.

10
- ,

1 0
-2

At the very longest wavelengths, spectra in Fig. 3
show a relatively small negative slope for zonal wind
and temperature and a positive slope for meridional
wind. This is characteristic o f planetary scale waves
as discussed at length by Boer and Shepherd (1983).
Between about 1000 and 3000 km wavelength, a ll
three spectra have a slope near —3. Lines with slopes
—3 and —
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all variables for comparison. The —3 slope is inter-
preted to imply an enstrophy cascade from longer to
shorter wavelengths in  quasi-geostrophic turbulence
(Charney, 1971). At  wavelengths below about 400
km, the spectra appear to follow a —
5
/
3  s l o p e .  T h e

magnitudes and general shapes of the spectra in Fig.
3 agree well with available past results for wind as
illustrated in Fig. 4.

The potential temperature spectrum contained in
Fig. 3 is the first temperature spectrum obtained over
this range of scales. The relationship of the tempera-
ture spectrum to the velocity spectra is discussed at
length in Gage and Nastrom (1985). Here we simply
point out that the temperature spectrum parallels the
velocity spectra at least down to  the scales (<300

Figure 1 – Spectre d’énergie cinétique observé dans l’atmosphère. Les deux courbes à droite sont

décalées artificiellement.

concentre autour d’un nombre d’onde ki. La question que l’on se pose est : au bout de quel temps T
cette erreur s’est elle propagée à un nombre d’onde kf < ki arbitraire ?

1. On suppose que l’erreur se propage par un processus local dans l’espace spectral, de sorte que

le temps associé au transfert entre les nombres d’ondes k et k/2 est ⌧NL. En déduire que T =R ki
kf

⌧NLd ln k. Calculer T , d’abord dans le cas où kf et ki sont tous deux dans le domaine inertiel

correspondant à la cascade directe d’enstrophie en 2D (sans tenir compte des effets non-locaux ;

on note T2D le résultat), puis dans la cascade directe d’énergie en 3D (on note T3D le résultat).

2. Montrer que T2D ! +1 quand ki ! +1, tandis que T3D reste borné. Que peut-on en déduire

pour la prédictibilité des écoulements turbulents 2D et 3D ?

3. On reproduit le spectre d’énergie observé de l’atmosphère dans la figure 1. Estimer (en ordre de

grandeur) le temps de prédictibilité de l’atmosphère à une échelle de 1000 km, en admettant que

l’on connaît la condition initiale aussi précisément que l’on souhaite (utilisez le spectre de vent

zonal). Qu’en pensez-vous ?

3 Dispersion de paires

On s’intéresse à l’évolution temporelle de la séparation quadratique moyenne de paires de particules

en turbulence 2D. On considère un ensemble de N paires de particules telles que D0,i représente la

séparation initiale de la paire i et on note Di(t) le vecteur séparation de cette paire à l’instant t.

1. Montrez qu’à temps courts, des particules initialement séparées d’une distance D0 se séparent de

façon ballistique avec un taux de croissance que l’on exprimera en fonction de SE
2 (D0). Quel est le

temps caractéristique de ce régime ballistique ? Exprimez l’évolution temporelle de la séparation

quadratique moyenne

D
(D�D0)

2
E
(t) dans le régime ballistique pour des séparations D0 < l0

(régime de cascade directe) et pour des séparations D0 > l0 (régime de cascade inverse).

2. Justifier que la séparation relative à temps longs peut se construire comme un processus itératif

du comportement ballistique à temps court élémentaire (on admettra que

D
(D�D0)

2
E
(t) =

⌦
D2

↵
�
⌦
D2

0

↵
(t)).
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Nastrom et al. (1984)

Can we estimate the order of magnitude 
of the limit or predictability of the 
atmosphere? 

• Error initially at infinitely small scales 
• Time to reach 100 km (3D turbulence): 

~0.5 day 
• Time to reach 1000 km: 

~2 days

Compatible with the estimate of Lorenz



Error growth in atmospheric 
models

different initialization times and for both the winter and
summer days of the Northern Hemisphere and the
Southern Hemisphere.
These unprecedented high-resolution 9-km global

ensembles of a state-of-the-science NWP model, ini-
tialized with both realistic and nearly perfect initial-
condition uncertainties, suggest that the ultimate limit of
midlatitude day-to-day weather predictability is about
2 weeks, but there is still a potential of 3–5 more days of
additional forecast lead time to be gained through im-
proving the current practical predictability, which is
about 9–10 days. Such improvements may be gained
from reducing initial-condition and model uncertainties
through better observations, better data assimilation,
and better forecast models running at higher resolution
with ever-increasing computing capability.

b. Spectral analysis

While 3–5 days serves as the estimated potential for
extended weather forecast lead time, the atmospheric
predictability limit is also scale dependent. For example,
small-scale thunderstorms are much less predictable
than the synoptic system in which they are embedded.
Therefore, it is important to examine the scale depen-
dence of predictability limit. Spectral decomposition of
perturbation kinetic energy across all zonalwavenumbers
averaged over the midlatitudes (408–608N) for both
winter and summer periods are displayed in Fig. 6. The
corresponding spectra for the Southern Hemisphere
midlatitudes (408–608S) are shown in Fig. 7.
The kinetic energy spectrum here is calculated as in

(Skamarock 2004). We have chosen to compute the
one-dimensional (1D) spectrum of the velocity fields

along zonal direction. The advantage of this 1D spec-
trum is that we could fully utilize the periodicity of the
global model in the zonal direction while focusing on the
midlatitude only. Let ui,j,n and yi,j,n denote the zonal and
meridional velocity components for the nth ensemble
member, subtracting the ensemble mean fields first if we
are calculating the kinetic energy spectra for the per-
turbations. For the spectra in Fig. 8, the differences be-
tween the perturbed run and the unperturbed run are
used. The Fourier transforms of the velocity compo-
nents ûj,n(k) and ŷj,n(k) are then computed along the
zonal direction for each ensemble member and all the
meridional j indices. Then the kinetic energy spectra
density can be written as

E
j,n(k)5

Dx
2N

x

[û
j,n(k)ûj,n

* (k)1 ŷ
j,n(k)ŷ j,n

* (k)], (2)

where Nx is the number of grid points along the zonal
direction of the model. The asterisk denotes the com-
plex conjugate. We can then average Ej,n(k) over j and
n to get the kinetic energy spectrum for the full en-
semble and the latitude band of interest (408–608N for
the midlatitudes; the results are not very sensitive to this
choice; the 308–608N average give very similar plots).
When the spectrum of the perturbation kinetic energy
(amplitude of ‘‘noise’’) at a given wavelength reaches
the reference background spectral kinetic energy (signal
to be predicted), it is saturated, after which no single
deterministic forecast will have any predictive skill.
Consistent with Fig. 3, Fig. 6 also shows that it takes

slightly more than 3 days for the perturbation kinetic
energy in the reduced-perturbation ensemble (EDA0.1)

FIG. 6. Forecast error growth and saturation for different horizontal scales. Evolution of ensemble-mean error
spectral kinetic energy (colored lines) averaged over NH midlatitudes (408–608N) for three 9-km, 10-member
ECMWF IFS global ensemble simulations with minute (1%) initial-condition errors (solid gray lines) initialized on
3 consecutive days for (a) the winter period and (b) the summer period. The reference background kinetic energy
spectra are derived from the respective 20-day mean spectra of the control forecast (dark dotted line). The
corresponding initial spread of the EDA ensemble with realistic analysis uncertainties are shown for comparison
(light-gray dotted lines). The two straight dotted line segments denote the spectral slopes of 23 and 25/3.

APRIL 2019 ZHANG ET AL . 1085

Zhang et al. (2019)

For NH mid-latitudes

• Qualitative error growth mechanism compatible with cascade mechanism 
• Order of magnitude of timescales similar to simple estimate (a bit longer, 

probably because the spectrum is steeper at small scales)



Predictability limit of the 
mid-latitudes

250 6 Atmospheric predictability and ensemble forecasting

Exercise 6.6.1: Derive eq (6.6.2) using separation of variables.

Figure 6.6.1 shows the solution for two values of the initial error, 10% and
1%, and an error growth rate a = 0.35/day, corresponding to a doubling time of
about 2 days. The analysis error in the 500-hPa geopotential heights in current
operational systems is of the order of 5–15 m, and the natural variability about
100 m, so that the current level of error in the initial conditions is ∼10% or less.
The upper limit for the best initial error achievable from data assimilation can be
reasonably estimated to be no less than 1%. This is because, as pointed out by
Lorenz, even if the observing system was essentially perfect at synoptic scales,
errors in much smaller, unresolved scales would grow very fast and through non-
linear interactions quickly introduce finite errors in the initial synoptic scales of the
model. The solution of the logistic equation for initial errors of 10% and 1% (Fig.
6.6.1) suggests that 2 weeks is indeed a reasonable estimate of the time at which the
forecast errors become so large that the ability to predict weather in mid-latitudes is
lost. The range between the two curves can be taken as a simple upper estimate of
how much forecasts could be improved by improving the initial conditions.

However, this is only an estimate of the average predictability in a perfect model.
The actual predictability is quite variable and depends on the “atmospheric instabil-
ities of the day”. The 2-week “limit”, which seemed huge during the 1960s when
2-day forecasts had little skill, is no longer large compared with what can be occa-
sionally attained with current models. For example, during a very predictable period
in December 1995, several numerical weather forecasts remained skillful for 15 days,
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Figure 6.6.1: Time evolution of the rms forecast error divided by the square root of
twice the climatological variance. It assumes that the forecast error growth satisfies
the logistic equation (6.6.1), and that the growth rate of small errors is about
0.35/day, corresponding to a doubling of small errors in 2 days. Analysis errors in the
initial conditions are estimated to be about 10% or less, but not smaller than 1%.

Kalnay, Atmospheric Modeling, Data Assimilation and Predictability

dε
dt

= aε(1 − ε)

ε =
ε0eat

1 + ε0(eat − 1)

a = 0.35 day−1

Simple model for the error: 
logistic equation

Predictability limit around 15 days



Evolution of Numerical 
Weather Prediction

REVIEW
doi:10.1038/nature14956

The quiet revolution of numerical
weather prediction
Peter Bauer1, Alan Thorpe1 & Gilbert Brunet2

Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady
accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions,
have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical
weather prediction is among the greatest of any area of physical science. As a computational problem, global weather
prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is
performed every day at major operational centres across the world.

A t the turn of the twentieth century, Abbe1 and Bjerknes2 pro-
posed that the laws of physics could be used to forecast the
weather; they recognized that predicting the state of the atmo-

sphere could be treated as an initial value problem of mathematical
physics, wherein future weather is determined by integrating the gov-
erning partial differential equations, starting from the observed current
weather. This proposition, even with the most optimistic interpretation
of Newtonian determinism, is all the more audacious given that, at that
time, there were few routine observations of the state of the atmosphere,
no computers, and little understanding of whether the weather possesses
any significant degree of predictability. But today, more than 100 years
later, this paradigm translates into solving daily a system of nonlinear
differential equations at about half a billion points per time step between
the initial time and weeks to months ahead, and accounting for dynamic,
thermodynamic, radiative and chemical processes working on scales
from hundreds of metres to thousands of kilometres and from seconds
to weeks.

A touchstone of scientific knowledge and understanding is the ability
to predict accurately the outcome of an experiment. In meteorology, this
translates into the accuracy of the weather forecast. In addition, today’s
numerical weather predictions also enable the forecaster to assess quan-
titatively the degree of confidence users should have in any particular
forecast. This is a story of profound and fundamental scientific success
built upon the application of the classical laws of physics. Clearly the
success has required technological acumen as well as scientific advances
and vision.

Accurate forecasts save lives, support emergency management and
mitigation of impacts and prevent economic losses from high-impact
weather, and they create substantial financial revenue—for example, in
energy, agriculture, transport and recreational sectors. Their substantial
benefits far outweigh the costs of investing in the essential scientific
research, super-computing facilities and satellite and other obser-
vational programmes that are needed to produce such forecasts3.

These scientific and technological developments have led to increas-
ing weather forecast skill over the past 40 years. Importantly, this skill
can be objectively and quantitatively assessed, as every day we compare
the forecast with what actually occurs. For example, forecast skill in the
range from 3 to 10 days ahead has been increasing by about one day per
decade: today’s 6-day forecast is as accurate as the 5-day forecast ten
years ago, as shown in Fig. 1. Predictive skill in the Northern and
Southern hemispheres is almost equal today, thanks to the effective

use of observational information from satellite data providing global
coverage.

More visible to society, however, are extreme events. The unusual
path and intensification of hurricane Sandy in October 2012 was pre-
dicted 8 days ahead, the 2010 Russian heat-wave and the 2013 US cold
spell were forecast with 1–2 weeks lead time, and tropical sea surface
temperature variability following the El Niño/Southern Oscillation phe-
nomenon can be predicted 3–4 months ahead. Weather and climate
prediction skill are intimately linked, because accurate climate predic-
tion needs a good representation of weather phenomena and their stat-
istics, as the underlying physical laws apply to all prediction time ranges.

This Review explains the fundamental scientific basis of numerical
weather prediction (NWP) before highlighting three areas from which
the largest benefit in predictive skill has been obtained in the past—
physical process representation, ensemble forecasting and model initi-
alization. These are also the areas that present the most challenging
science questions in the next decade, but the vision of running
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Figure 1 | A measure of forecast skill at three-, five-, seven- and ten-day
ranges, computed over the extra-tropical northern and southern
hemispheres. Forecast skill is the correlation between the forecasts and the
verifying analysis of the height of the 500-hPa level, expressed as the anomaly
with respect to the climatological height. Values greater than 60% indicate
useful forecasts, while those greater than 80% represent a high degree of
accuracy. The convergence of the curves for Northern Hemisphere (NH) and
Southern Hemisphere (SH) after 1999 indicates the breakthrough in exploiting
satellite data through the use of variational data100.
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State-dependent 
predictability

As we shall see, predictability properties depends on the state of the 
atmosphere at the time of prediction. 

The predictability depends on the local instabilities of the flow in phase 
space. 

How to study this quantitatively? 

• Singular vectors of the tangent linear model 
• Lyapunov vectors

See e.g. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability



II. Weather Forecasting 
2. Data Assimilation



How to determine the initial 
condition for a prediction?

(a)

Global analysis (statistical
interpolation) and balancing

Global forecast model

Initial conditions

Observations (+/−3 h)
Background or

first guess

6-h forecast

(Operational forecasts)

(b)

Regional analysis (statistical
interpolation) and balancing

Initial conditions

Observations (+/−30 min)
Background
or first guess

1-h forecast

Boundary conditions
from global model Regional forecast model

(Operational forecasts)

Figure 5.1.2: (a) Typical global 6-h analysis cycle performed at 00, 06, 12, and
18 UTC. The observations should be valid for the same time as the first guess. In the
global analysis this has usually meant the rawinsondes are launched mostly at the
main observing times (00 and 12 UTC), and satellite data are lumped into windows
centered at the main observing times. The observations can be direct observations of
variables used by the model, or indirect observations of geophysical parameters, such
as radiances, that depend on the variables used in the model. (b) Typical regional
analysis cycle. The main difference with the global cycle is that boundary conditions
coming from global forecasts are an additional requirement for the regional forecasts.

·X = F(X), X ∈ ℝn

The dimension of the model space is 
much larger than the number of 
available observations: inverse 

problem!

Kalnay, Atmospheric Modeling, Data Assimilation and Predictability



Optimal interpolation 
(simple)

Suppose you have two estimates for a quantity, what is the optimal combination?

̂Tb = T + εb, 𝔼[εb] = 0, 𝔼[ε2
b] = σ2

b

̂To = T + εo, 𝔼[εo] = 0, 𝔼[ε2
o] = σ2

o

𝔼[εbεo] = 0

̂Ta = ab
̂Tb + ao

̂ToOptimal linear interpolation: (analysis)

• Unbiased estimator:  implies  
• Minimize mean-square error:  

Solution: 

𝔼[ ̂Ta] = T ab + ao = 1
σ2

a = 𝔼[( ̂Ta − T )2] = 𝔼[(abεb + aoεo)2]

ab =
σ2

o

σ2
b + σ2

o
, ao =

σ2
b

σ2
b + σ2

o

̂Ta = ̂Tb + W( ̂To − ̂Tb), W = ao,
σ2

a = (1 − W )σ2
b

(model prediction=“background”)
(observation)

analysis = background+gain*innovation



Optimal interpolation 
(general)

xa = xb + W[yo − H(xb)],
W = BHT(R + HBHT)−1,
A = (I − WH)B

This time the analysis, background and observation vectors can have arbitrary 
dimensions, and the observations are indirect.

A = 𝔼[εaεT
a ],

B = 𝔼[εbεT
b ],

R = 𝔼[εoεT
o ]

Error covariance matrices: Linearization of “forward 
observational operator”:

H(x + δx) = H(x) + Hδx + o(δx),
yo − H(xb) = εo − Hεb

We assume 𝔼[εoεT
b ] = 0

We assume that the background (model) 
and observation error are unbiased: 

𝔼[εb] = 𝔼[ε0] = 0

To use this formula in practice we 
need to estimate B, R and H.



Kalman Filter

xn+1
b = M(xn

a),
xn

a = xn
b + Wn[yn

o − H(xn
b)],

Wn = BnHT(R + HBnHT)−1,
Bn+1 = LnAnLT

n ,
An = (I − WnH)Bn

The idea of the Kalman filter is to use iteratively the optimal interpolation method to 
propagate both the state of the system and the error covariance matrix.

with Ln the tangent linear model.

The Kalman filter becomes prohibitively expensive for high-dimensional 
systems, so in practice some approximations are made (e.g. using ensemble 
methods).



II. Weather Forecasting 
3. Ensemble Forecasting



Goals of ensemble forecasting228 6 Atmospheric predictability and ensemble forecasting

Time

Deterministic Stochastic

A

B

Figure 6.4.1: Schematic of ensemble prediction, with individual trajectories drawn
for forecasts starting from a representative set of perturbed initial conditions within a
circle representing the uncertainty of the initial conditions (ideally the analysis error
covariance) and ending within the range of possible solutions. For the shorter range,
the forecasts are close to each other, and they may be considered deterministic, but
beyond a certain time, the equally probable forecasts are so different that they must
be considered stochastic. The transition time is of the order of 2–3 days for the
prediction of large-scale flow, but can be as short as a few hours for mesoscale
phenomena like the prediction of individual storms. The transition time is shorter for
strongly nonlinear parameters: even for large-scale flow, precipitation forecasts show
significant divergence faster than the 500-hPa fields. The forecasts may be clustered
into subsets A and B. (Adapted from Tracton and Kalnay, 1993.)

to singular vectors and LLVs discussed in the previous section. This was followed by
several early approaches to the problem of accounting for the variable predictability
of the atmosphere reviewed in this section.

6.4.1 Stochastic-dynamic forecasting
Historically, the first forecasting method to explicitly acknowledge the uncertainty
of atmospheric model predictions was developed by Epstein (1969), who introduced
the idea of stochastic-dynamic forecasting. He derived a continuity equation for the
probability density ϕ(X ; t) of a model solution X of a dynamical model Ẋ = G(X (t)),
where the model has dimension D:

∂ϕ

∂t
+ ∇D · (Ẋϕ) = 0 (6.4.1)

This equation indicates that in an ensemble of forecast solutions, “no member of
the ensemble may be created or destroyed”. An ensemble starting from an infi-
nite number of perturbed integrations spanning the analysis uncertainty gives the
“true” probability distribution (with all its moments), but even for a simple low-order
model, the integration of (6.4.1) is far too expensive. Therefore Epstein introduced an
approximation to predict only the first and second moments of the probability distri-
bution (expected means and covariances) rather than the full probability distribution.

Kalnay, Atmospheric Modeling, Data Assimilation and Predictability
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5-day forecast for 15 Nov 1995 (NCEP) 2.5-day forecast for 21 Oct 1995 (NCEP)

Predictable winter storm Limited predictability

17 ensemble members
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Plate 2 Example of a probabilistic forecast of accumulated precipitation greater 
than 5 mm. The probabilities are computed simply as the number of ensemble members
with at least the indicated threshold of accumulated precipitation divided by the total
number of ensemble forecasts. Both the 24-h and the 7-day forecast verify on 6 April
2001. Courtesy of NCEP/NWS.

Plate 2 Example of a probabilistic forecast of accumulated precipitation greater 
than 5 mm. The probabilities are computed simply as the number of ensemble members
with at least the indicated threshold of accumulated precipitation divided by the total
number of ensemble forecasts. Both the 24-h and the 7-day forecast verify on 6 April
2001. Courtesy of NCEP/NWS.

Fraction of ensemble members with P > 5mm 

Short timescale (1 day) Long timescale (7 days)
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Figure 1.7.1: Anomaly correlation of the ensembles during the winter of 1997–8
(controls, T126 and T62, and ten perturbed ensemble forecasts). (Data courtesy Jae
Schemm, of NCEP.)

skill. The control “deterministic” forecast (circles) had an “anomaly correlation”
(AC, pattern correlation between predicted and analyzed anomalies) in the 5-day
forecast of 80%, which is quite good. The ten perturbed ensemble members have
individually a poorer verification with an average AC of about 73% at 5 days. This is
because, in the initial conditions, the control starts from the best estimate of the state
of the atmosphere (the analysis), but growing perturbations are added to this analysis
for each additional ensemble member. However, the ensemble average forecast tends
to average out uncertain components, and as a result, it has better skill than the control
forecast starting at day 5. Note that the ensemble extends by one day the length of the
useful forecast (defined as an AC greater than 60%) from about 7 days in the control
to about 8 days in the ensemble average.

The second goal of the ensemble forecasting, to provide guidance on the uncer-
tainty of each forecast, is accomplished best by the use of two types of plots. The
“spaghetti” plots show a single contour line for all 17 forecasts, and the probabilistic
plots show, for example, what percentage of the ensemble predicts 24-h accumulated
precipitation of more than 1 inch at each grid point (for probabilistic Quantitative
Precipitation Forecasts or pQPF). Both of them provide guidance on the reliability
of the forecasts in an easy-to-understand way. The use of the ensembles has provided
the US NWS forecasters with the confidence to issue storm forecasts 5–7 days in ad-
vance when the spaghetti plots indicate good agreement in the ensemble. Conversely,
the spaghetti plots also indicate when a short-range development may be particularly

Kalnay, Atmospheric Modeling, Data Assimilation and Predictability

The ensemble-average forecast remains correlated with observations for longer than 
control or individual perturbed forecasts
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Forecast error dominated by 
systematic (model) error
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Figure 6.5.1:(a) Schematic of the components of a typical ensemble: (1) the control
forecast (labeled C) which starts from the analysis (denoted by a cross), which is the
best estimate of the true initial state of the atmosphere; (2) two perturbed ensemble
forecasts (labeled P+ and P−) with initial perturbations added and subtracted from
the control; (3) the ensemble average denoted A; and (4) the “true” evolution of the
atmosphere labeled T. This is a “good” ensemble since the “truth” appears as a
plausible member of the ensemble. Note that because of nonlinear saturation, the
error of the ensemble member initially further away from the truth (in this case P+)
tends to grow more slowly than the error of the member initially closer to the truth.
This results in a nonlinear filtering of the errors: the average of the ensemble
members tends to be closer to the truth than the control forecast (Toth and Kalnay,
1997, also compare with Fig. 1.7.1). (b) Schematic of a “bad” ensemble in which the
forecast errors are dominated by system errors (such as model deficiencies). In this
case, the ensemble is not useful for forecasting, but it helps to identify the fact that
forecast errors are probably due to the presence of systematic errors, rather than to
the chaotic growth of errors in the initial conditions.
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Figure 6.5.1:(a) Schematic of the components of a typical ensemble: (1) the control
forecast (labeled C) which starts from the analysis (denoted by a cross), which is the
best estimate of the true initial state of the atmosphere; (2) two perturbed ensemble
forecasts (labeled P+ and P−) with initial perturbations added and subtracted from
the control; (3) the ensemble average denoted A; and (4) the “true” evolution of the
atmosphere labeled T. This is a “good” ensemble since the “truth” appears as a
plausible member of the ensemble. Note that because of nonlinear saturation, the
error of the ensemble member initially further away from the truth (in this case P+)
tends to grow more slowly than the error of the member initially closer to the truth.
This results in a nonlinear filtering of the errors: the average of the ensemble
members tends to be closer to the truth than the control forecast (Toth and Kalnay,
1997, also compare with Fig. 1.7.1). (b) Schematic of a “bad” ensemble in which the
forecast errors are dominated by system errors (such as model deficiencies). In this
case, the ensemble is not useful for forecasting, but it helps to identify the fact that
forecast errors are probably due to the presence of systematic errors, rather than to
the chaotic growth of errors in the initial conditions.
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260 12. CLIMATE AND CLIMATE VARIABILITY

Weather
Land surface
Ocean mixed layer
Sea ice
Volcanos
Vegetation
Thermocline
Mountain glaciers
Deep ocean
Ice sheets
Orbital forcing
Tectonics
Weathering
Solar  constant

FIGURE 12.1. The instrumental and paleorecord shows that ‘‘weather’’ and ‘‘climate’’ vary on all timescales,
from hours and days to millions of years. Here we tabulate the mechanisms operating at different timescales.
Greenhouse gases might also be added to the table: natural CO2 cycles occur on timescales up to 1k–10k y and
longer and the human (100 y) timescale for CO2 is now important; methane changes can occur at 10 y timescales out
to 10k y and beyond. It should also be noted that nonlinearities make the true separation of timescales impossible.

During the last glacial period, 15k–60k y
ago, dramatic discharges of large quanti-
ties of ice from the land ice sheets (Heinrich
events) have occurred every 10k y or so.
During the same period, abrupt warming
events have occurred over Greenland and
the northern North Atlantic every 1.5k y
(Dansgaard-Oeschger oscillations), as will
be discussed in Section 12.3.5. Each of these
events caused a warming of some 10◦C that
occurred abruptly, within 20–50 y, lasted
a few hundreds of years, and terminated
abruptly again. Regional fluctuations on
shorter timescales of order 1–2◦C have also
occurred, such as the Little Ice Age centered
over Europe during the seventeenth cen-
tury. A more recent example of climate
fluctuations on timescales of decades and
shorter is the dust bowl of the Great Plains
in the 1930s. Looking back much further,
100M y ago, ice was in all likelihood totally
absent from the planet, and deep ocean tem-
peratures were perhaps more than 10◦C
warmer than today. Scientists even spec-
ulate about whether, during periods in the
distant past, Earth was totally frozen over
in a ‘‘snowball.’’ What is clear is that Earth’s
climate has always changed, and continues
to do so, with the added complication that

human activities are now also a contributing
factor.

Clearly we must try and understand
the nature of climate fluctuations on all
timescales. This is a vast undertaking. There
is no accepted general theory of climate, but
many factors are implicated in the control of
climate. The most important processes, and
the timescales on which they act, are listed
in Fig. 12.1. One important lesson from the
paleoclimate record is that the climate can
change more rapidly than a known forc-
ing. For example, climate is capable of large
changes over a short time, as in the massive
reglaciation event known as the Younger
Dryas, around 12k y ago (see Section 12.3.5).
This lasted perhaps 1.5k y or so, but began
and ended abruptly. The climate perhaps
has preferred states between which it can
flip in a discontinuous manner. The mech-
anisms behind such abrupt climate change
are unclear, and are the subject of much cur-
rent research. Finally, the interpretation of a
particular proxy record in terms of climate
variables is often uncertain, as is the extent
to which it is indicative of regional or global
change, issues that are crucial when one is
trying to identify mechanisms. In this con-
cluding chapter, then, we begin to explore

Marshall & Plumb, Atmosphere, Ocean, and Climate Dynamics

What are these slow processes and can they provide long range predictability? 



The North Atlantic Oscillation142 El Niño and year-to-year climate prediction
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Fig. 4.26 Patterns associated with the positive phase of the North Atlantic Oscillation, schematically showing patterns of
anomalously high and low surface pressure, and anomalous winds that tend to extend the strong region of the
climatological jet stream across the Atlantic. The resulting precipitation anomalies that can be associated with this are
shown as stippled regions.23

the oscillation, the anomalies are approximately reversed, with easterly anomalies tending
to weaken the climatological westerlies, resulting in precipitation anomalies of opposite
sign in approximately the same locations.

Notes

1 Secondary effects that also help warm SST are that upwelling is not quite as strong as under
normal conditions, and westward currents carrying cold water westward are a bit weaker than
normal.

2 For a more rigorous treatment of adjustment of the surface height to thermocline depth, it is also
necessary to consider the speed of waves associated with displacement of surface height and
currents through the entire depth of the ocean (known as the barotropic mode). The adjustment

Neelin, Climate Change and Climate Modeling



The North Atlantic Oscillation

(a)

(b)

(c)

NAO DJFM 39.6

DJFM 1899-2002

Period (Years)
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r (1 yr) = 0.24

Figure 7.4 (a) Leading EOF of the DJFM mean sea level pressure anomalies (hPa,
contour increment 0.5 hPa) in the North Atlantic sector (20◦N–70◦N; 90◦W–40◦E)
over the years 1899–2001. (b) Normalised indices of the mean winter (December–
March) NAO constructed from SLP data. Top panel: the difference of normalised
sea level pressure between Lisbon and Stykkisholmur [dots in (a)]. Middle panel: the
PC time series of the leading EOF as presented in (a). Lower panel: PC time series
of the NAM. (c) Power spectrum of time series in the middle panel of (b) with the
5% and 95% confidence limits of the corresponding red noise spectrum; the lag-one
autocorrelation coefficient is 0.24 (figure from Hurrell et al., 2003).

Empirical Orthogonal Functions (or Principal 
Component Analysis) 

For a random vector or field X, the covariance 
matrix is:





EOFs are the eigenvectors  of , 
ordered from larger to smaller eigenvalues 

. Total variance is 




The field can be decomposed in this basis:
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1998, the ENSO mode has been mostly negative, indicating colder than 
normal SST in the equatorial east Pacific. In addition to the 2–6 year time 
scale of the life cycle of ENSO, one can also see longer period variations 
in the ENSO mode. These are highlighted by the smooth line in Fig. 8.15b, 
which has filtered out variations with periods shorter than 6 years.  Because 
ENSO is such a dominant mode of interannual variability, these decadal 
variations in ENSO can have a significant global influence.

The Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal 
Oscillation (AMO) are often discussed. To isolate these we can perform 
the EOF analysis as above for ENSO, but instead of including the global 
ocean, consider only the North Pacific and North Atlantic. The PDO was 
first defined as the dominant EOF of SST north of 20°N in the Pacific (Man-
tua et al., 1997). This structure and its time series are shown in Fig. 8.16. 
The PDO looks very much like ENSO, with a bit more emphasis on the 
extratropical signal and longer time scales. It can be argued that the PDO 
is nothing more than the low-frequency component of ENSO, and it can be 
seen that the time series of ENSO and PDO are correlated.

The AMO was first characterized as the anomalies in the areal mean 
temperature of the North Atlantic (Schlesinger and Ramankutty, 1994). 

FIGURE 8.15 The structure of El Niño. (a) The spatial pattern of ENSO; the regression of 
monthly SST onto the first EOF of global SST from 1880 through January 2015. Contour inter-
val is 0.1 K, positive anomalies are red and the zero contour is in white. (b) The time structure 
of ENSO; time series of the amplitude of the spatial pattern in units of standard deviations. 
The red line is smoothed to remove periods shorter than six years.

First EOF of global SST

Hartmann, Global Physical Climatology

Leading Principal Component

Leading mode of interannual climate variability



December 1997 El Niño event

19 1.5 El Niño: an example of natural climate variability

during the Tropical Ocean–Global Atmosphere (TOGA) program, both in oceanographic
measurements and satellite observations. In addition to the relatively less complex model
used by Cane and Zebiak, more complete climate models began to simulate ENSO, and
prediction schemes were developed for these. By the end of the TOGA program in 1995,
prediction schemes had passed from the research community to national centers. An Inter-
national Research Institute for Seasonal-to-Interannual Climate Prediction was formed,
and in the US the National Meteorological Center renamed itself the National Centers
for Environmental Prediction (NCEP), in recognition of the fact that meteorological pre-
diction had become only a subset of a more inclusive mission, predicting environmental
impacts. Climate prediction of seasonal-to-interannual time scale variations had become
a reality.

1.5.2 Observations of El Niño: the 1997–98 event

Here we focus on the essential aspects of the ENSO phenomenon: the anomalous con-
ditions within the tropical Pacific. Excellent observations are available for the 1997–98
event, and its spatial structure is quite typical of El Niño events. Although the magnitude
is the largest of the past century, it thus provides an example of the form and evolution
of the warm phase of the ENSO cycle. Here we focus on the fully developed stage of the
event; we will return to the evolution in Chapter 4, once we have the modeling tools to
understand it.

Sea surface temperature anomalies, shown in Figure 1.7 for December 1997, exhibit a
large warming in the whole eastern and central part of the equatorial Pacific, by up to 5 ◦C.
This is the essential signature of El Niño. Warming up and down the west coast of North
and South America is a common by-product. Anomalies of SST seen in other ocean regions
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Fig. 1.7 December 1997 anomalies of sea surface temperature during the fully developed warm phase of ENSO are up to 5 ◦C
warmer than normal along the equator over the eastern Pacific. In terms of total temperature (i.e. climatology plus
anomaly), this implies that the cold waters that usually occur in this region are almost as warm as the western
Pacific.16
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Fig. 1.8 December 1997 anomalies of precipitation during the fully developed warm phase of ENSO show a large increase over
the anomalously warm waters.17

are less closely related. Smaller variations of SST commonly occur in all oceans driven
by random weather fluctuations but are not as coherent and long-lasting as El Niño. The
warm SST anomalies in Figure 1.7 occur in a region along the equator that is normally
relatively cold, called the equatorial cold tongue. During some El Niño events the warm
SST anomalies might have a maximum in the central Pacific rather than in the eastern part
of the basin, but they always occur along the equator. The area of the warm anomaly is
very large – the region of 1 ◦C or larger warming is roughly the area of the continental
United States.

The change in the distribution of warm SST creates a shift in the regions of strong convec-
tion during El Niño, as seen in the precipitation map in Figure 1.8. The region with increased
rainfall tends to occur over the region with anomalously warm SST and is associated with
rising motion and convergence of the surface winds. The reduced precipitation over much
of the western Pacific and Indonesian region and parts of equatorial South America is a
strongly related side-effect. Because the convection has extended over a larger region in the
eastern Pacific, rainfall in neighboring regions tends to be reduced. Precipitation impacts
over the United States are not visible in Figure 1.8, partly because the scale is set for the large
tropical anomalies and partly because the impacts outside the tropics (in “midlatitudes”)
are statistical in nature. Since these observations are averaged only over one month, there is
also considerable variability that is weather-related, and would disappear in a longer-term
average.

Figure 1.9 shows near-surface wind anomalies typical of an El Niño. The winds tend to
converge into the rising region with increased rainfall. Because the wind to either side of
the equator is affected by the rotation of the Earth, the largest wind anomalies tend to occur
along the equator, with westerly wind anomalies blowing into the convergent region.

A three-month average is shown for the wind anomaly because in an individual month
features associated with weather variations would appear, in addition to those associated
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Fig. 1.9 Low-level wind anomalies (averaged December 1997 to February 1998) during the warm phase of ENSO. Anomalies
smaller than 4 m s−1 are omitted.18

with El Niño SST anomalies. The wind anomaly off California in Figure 1.9 may be asso-
ciated with an El Niño teleconnection, but would not be as reproducible in different El
Niños as the winds at the equator. In a smaller El Niño event, both wind and precipitation
anomalies would tend to be confined to the region near the International Date Line (180◦

longitude), and would not extend as far eastward. The wind anomalies in turn set in motion
a complex adjustment process in the ocean. East of the westerly wind anomalies, the warm
water in the upper ocean flows eastward along the equator, affecting subsurface temperature
in the ocean.

Besides the SST, an important aspect of the oceanic side of ENSO involves changes in
temperature that are occurring below the ocean surface in a layer about 100–200 m down
known as the thermocline, which separates the deep ocean from the upper ocean. The
waters in the upper layer of the ocean above the thermocline are much warmer than those
below. Currents flowing in the upper layer can change the depth of the thermocline. Direct
measurements of subsurface temperature structure are available, but recently it has become
possible to obtain more detailed horizontal maps by measuring sea surface height from
satellite. Small changes in sea surface height correspond to large changes in thermocline
depth.

Figure 1.10 shows a surface height map for the mature El Niño. The region of increased
sea surface height in the eastern Pacific corresponds to a deeper than normal thermocline.
This is a leading factor in producing the warm SST anomalies in that region. The region
of decreased surface height in the western Pacific (see Figure 1.10) does not impact SST
in that region, but plays a role in subsequent evolution into a cold phase of ENSO. The
thermocline shallows in the west because currents corresponding to the wind anomalies in
Figure 1.9 are transferring warm water to the eastern side of the basin along the equator. Due
to effects of the Earth’s rotation, this shallowing occurs preferentially off the equator. Thus
the horseshoe pattern of decreased sea surface height extending around the west Pacific
with maxima just off the equator is characteristic of tropical ocean dynamics undergoing a
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Fig. 1.10 December 1997 anomalies of sea level height (centimeters) during the fully developed warm phase of ENSO. In the
eastern Pacific the thermocline is deeper (sea level is higher) than normal owing to the affects of westerly wind
anomalies near the Date Line. West of the wind anomalies, the thermocline shallows (sea level drops) as warm water
is transferred to the east. Data from NOAA Laboratory for Satellite Altimetry following Cheney et al. (1994).19

slow adjustment process to El Niño wind anomalies. It is this slow adjustment that causes
the coupled system to oscillate between warm and cold phases, as we will see in Chapter 4.
The regions of low sea level tend to propagate westward and make their way slowly back
to the equator. It is this effect that brought about the termination of the 1997–98 El Niño
warm phase. The decreased surface height in the west during El Niño, and thus prior to La
Niña, is the counterpart in modern data of Wyrtki’s observations of sea level at island tide
gauge stations increasing prior to El Niño.

During the cold La Niña phase of the ENSO cycle, anomaly patterns would be similar,
but with reversed signs, for each of the variables in Figures 1.7 to 1.10.

1.5.3 The first El Niño forecast with a coupled ocean–atmosphere model

The Cane and Zebiak coupled model of ENSO was used for an experimental forecast
of El Niño conditions as early as 1986.20 The researchers had atmospheric conditions
in the form of wind measurements,21 but, at the time, few measurements of subsurface
temperature or sea surface height were available to set the initial conditions of the ocean
component of their model. They found that they could get around this problem by run-
ning the ocean model first, with atmospheric conditions specified. The past history of the
surface winds caused the ocean to undergo variations in thermocline depth that, while
not perfect, were accurate enough to set the initial conditions at the time of the forecast.
They then ran the coupled model forward in time to see if anomalous warm or cold con-
ditions would develop from these initial conditions. To compensate for uncertainty in the
initial forecast conditions they ran several forecasts, beginning from slightly different ini-
tial conditions, and then averaged the forecasts. They also took 3-month averages of the

Neelin, Climate Change and Climate Modeling
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Fig. 1.4 The Southern Oscillation large-scale atmospheric pattern associated with El Niño as originally seen in surface pressure.
Similar to work by Walker (1923), this figure from Berlage (1957) correlates pressure data at points everywhere on the
map with pressure at one point (Djakarta, Indonesia, marked Dj). Maximum correlation of 1.0 occurs at that point
necessarily, but the large negative correlations in the eastern tropical Pacific indicate a strong organized pattern of
variability. Tahiti (T) and Darwin (Da) are also marked. Pressure data from these points are used to construct the
Southern Oscillation Index (SOI).
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Fig. 1.5 Schematic indicating commonly used index regions for ENSO SST anomalies. Average SST anomalies over these
regions are refered to as Niño-1 through Niño-4. Averages over the Niño-3 region are the most commonly used, since
this area is where the largest anomalies occur during the typical El Niño or La Niña event.

indices of sea surface temperature (SST) variations associated with El Niño. SST data are
averaged over the boxes shown, which are numbered westward from the South American
coast. The small coastal boxes have longer data records, based on coastal stations, but
the east-central Pacific box, Niño-3, is a better indicator of the main part of the El Niño
signal. The time series of monthly Niño-3 anomalies since 1950 is shown along with the
SOI in Figure 1.6. The close relation between atmospheric and oceanic aspects of ENSO
may be seen in the negative correlation of variations in sea surface temperature and surface
pressure gradient. When the SST in the Niño-3 region is warm during El Niño, the SOI
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Fig. 1.6 Covarying atmospheric and oceanic indices. The figure shows anomalies (departures from climatological mean) of sea
surface temperature, and of the Southern Oscillation Index (SOI). The SST is averaged over a region in the
eastern-central Pacific at the equator, and this index is known as Niño-3. The SOI consists of normalized surface
pressure difference between Tahiti, in the mid-Pacific, and Darwin, Australia, near the equator. This provides a
measure (available in relatively long records) of the pressure gradient across the Pacific, along the equator, which is in
turn related to wind variations over the Pacific. During negative phases of the SOI, the anomalous winds blow from
the west (“westerly”) from high to low pressure along the equator. The SOI is normalized by the standard deviation,
while SST is in degrees centigrade. Power spectra of these time series (inset) exhibit a broad but robust peak centered
at approximately 4-year period (axis in cycles/year). A smaller (and less statistically robust) peak near 2-year period is
sometimes noted but is not resolved here.10

is negative, i.e. pressure is low in the eastern Pacific relative to the west. This pressure
gradient tends to produce anomalous winds blowing from west to east along the equator.
The reverse holds during periods of cold equatorial Pacific SST (La Niña), when the pressure
gradient reverses.

It may also be seen that the alternation between warm and cold phases is quite irregu-
lar, but that there is nonetheless a tendency toward a preferred time scale for recurrence,
typically 3 to 5 years. This visual impression is confirmed by the power spectrum shown
in the inset of Figure 1.6. A power spectrum treats a time series as if it were composed
of a sum of sinusoidal oscillations at different frequencies and shows a measure of the
squared amplitude at each frequency.11 If there really is a dominant oscillation, a peak of
power occurs at that frequency. If the series were composed instead of white noise, with
each time uncorrelated with the last, then there would be equal amounts of power at all
frequencies. In the spectrum for both SOI and Niño-3, there is a spectral peak at around
0.25 cycles per year, that is, around a 4-year period. It is a broad peak, with the power high
from periods of about 3 years to 5 years. Furthermore, there is considerable power that
is spread among all the frequencies, characteristic of a noisy (or chaotic) time series. In
climate time series, obtaining even a broad spectral peak is unusual. Because it indicates

Neelin, Climate Change and Climate Modeling
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Figure 1 | First- and second-winterNAOskill. a–f, First winter (DJF1) results (a,c,e) and secondwinter (DJF2) results (b,d,f). a,b, Time series of theNAO from
the DePreSys3 ensemble mean (red line) and the HadSLP observations (black line). Time series have been normalized by their standard deviation. The year
refers to the January of the DJF period. DJF, December–January–February. c,d, Maps of skill (correlation) for predicting the first- and second-winter MSLP.
e,f, As c,d, but for predicting the upper-tropospheric (250 hPa) zonal winds. Stippled regions are significant at the 5% level according to a Student’s t-test.

is ‘overdispersive’ or ‘underconfident’, as has been found for
the NAO12,13, paradoxically enabling skilful predictions from the
ensemble mean despite an unrealistically large signal-to-noise
ratio. We find RPC= 2.31 and RPC= 2.11 for the first- and
second-winter NAO predictions, respectively. These RPC values
are significantly different from RPC= 1 at better than the 1%
significance level (Supplementary Fig. 3c,d), despite previous
concerns over the sensitivity to hindcast length16. We note, however,
that the RPC cannot be robustly estimated from a small ensemble
as used by ref. 16 (Supplementary Fig. 3e,f). A solution to this
‘signal-to-noise paradox’ is needed to further explore the ultimate
predictability of the NAO.

We now investigate the potential sources of predictability that
could drive the winter NAO skill. We assess which regions and
variables remain skilfully predicted leading into the second winter
in Fig. 3. We find significant skill for linearly detrended sea surface
temperatures (SST) in the tropical and North Pacific, the Indian
Ocean and parts of theNorthAtlantic (Fig. 3a), and for some regions
of Arctic sea ice, including around the Kara Sea (Fig. 3b). We also
find significant skill in the stratospheric zonal winds (for example,
at 50 hPa, Fig. 3c), both at the equator (corresponding to the Quasi-
Biennial Oscillation, QBO) and at high northern latitudes near the
edge of the stratospheric polar vortex.

We further investigate which variables could be driving the NAO
by correlating with fields from the preceding November. A lag is
required to avoid effects that are driven by the NAO, but we note
that this analysis will not detect any contemporaneous drivers, and
so would not be expected to provide a complete explanation of
the skill. Nevertheless, the resulting correlation maps show broadly
consistent patterns, albeit with different strengths, for the second
winter (Fig. 3d–f), first winter (Fig. 3g–i) and in observations
(Fig. 3j–l). To potentially explain the second-winter NAO skill, we
seek variables that are both significantly predicted and correlated
with the subsequent winter NAO variability. Although the QBO is
highly predictable (r= 0.71), it is not significantly correlated with
the NAO, and is not considered further. Our analysis highlights four
potential sources of skill that have also previously been identified
in the literature: the El Niño–Southern Oscillation (ENSO) in
the tropical Pacific in agreement with both observational17 and
modelling18,19, studies; the Atlantic SST tripole pattern that has been
linked to NAO variations in early winter20; the sea-ice coverage in
the Kara Sea region21; and the stratospheric polar vortex strength
(SPVS) via which many different drivers can act22.

We use cross-validated multiple linear regression (MLR) to
predict the observed NAO using the four November predictors
identified above (see Fig. 3a–c cyan boxes and Methods). The
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NAO index: sea-level pressure difference between Iceland and the Azores

The ensemble-averaged prediction shows skill at predicting NAO a year or two in 
advance.
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Fig. 4.15 Forecast of SST anomalies (as 3-month averages) made fromMarch 1997 for subsequent months, during the onset of
the 1997–98 El Niño from the NCEP ocean–atmosphere model. Courtesy of the National Center for Environmental
Prediction. Contour interval 1◦C with additional contours at±0.5◦C.9

As one expects, the shorter lead time forecasts compare better with what was subsequently
observed. While the 9-month forecast predicted a moderate warming, what actually hap-
pened was a large El Niño, with a very rapid onset. Later forecasts (at shorter lead time) did
somewhat better at the amplitude, but by then the El Niño was under way. This gives a fair
picture of the state of ENSO forecasts. They can be very useful, but they are not perfect,
especially at longer leads.

4.7.1 Limits to skill in ENSO forecasts

The loss of skill in forecasts can be divided into two categories: (i) imperfections in the fore-
cast system, and (ii) fundamental limits to predictability. The imperfections in the forecast
system are often something we can change if willing to spend enough time and money.

Forecast March 1997
128 El Niño and year-to-year climate prediction
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Fig. 4.16 Series of forecasts of SST anomalies averaged over the Niño-3 region of the equatorial Pacific. The solid line gives the
observed, while each cross represents a forecast, made from several months previous. To the extent that the crosses
agree with the observed, the forecasts were accurate. Note that at the end of the time series, the data are not
displayed because they were not available at the time that the last forecast was issued. (a) Forecasts at 3-month lead
time. (b) Forecasts at 6-month lead time. (c) Forecasts at 9-month lead time. Courtesy of the National Center for
Environmental Prediction.

They include: error in model parameterization of sub-grid-scale motions (like atmospheric
convection and ocean mixing), the relative scarcity of points with data, errors in measure-
ment of the data, and so on. However, even if we were to achieve almost perfect models
and tremendous data coverage, we would not be able to predict ENSO (or other climate
phenomena) indefinitely into the future. The fundamental limits to predictability come from
the complex, chaotic nature of the system.

Weather forecasts are limited to less than two weeks of useful skill. This is because
of chaotic behavior in weather systems. In fact, the primary innovation in the invention
of chaos theory came from Edward Lorenz of the Massachusetts Institute of Technology
(MIT), precisely from work to explain why weather prediction ran into problems at long
leads. Suppose you take two copies of the same weather model (based on the equations of
Chapter 3, or even simplified versions) and try to predict the weather in one (the control)
using the other. There are thus no model errors. The data at the initial time of the forecast

Neelin, Climate Change and Climate Modeling

There is some skill for predicting ENSO a few months in advance, but major obstacles 
remain (“spring predictability barrier”). This is a topic of active research.



III. Climate prediction 
2. Sensitive dependence 

on initial condition


