Samuel Bera, Mickael Bourgoin, Nicolas Plihon
samuel.bera@ens-lyon.fr, mickael.bourgoin@ens-lyon.fr, nicolas.plihon@ens-lyon.fr
Why sedimentation of anisotropic particles ?

- For Climate
physics of anisotropic ice crystals in clouds [3]
dynamics of micro-plastics and phytoplankton in Oceans [5]
- For engineering and industries:
catalysis (Fluidized Bed Reactor)

The governing equation for cylinders

Translational (4) and rotational (5) equations:

$$
\begin{gathered}
\vec{w}=\frac{d \vec{x}}{d t} ; \quad m_{p} \frac{d \vec{w}}{d t}=m_{p} \vec{g}+\vec{f}_{S}+\vec{f}_{I} \\
J \ddot{\theta}=\underbrace{-C_{S} \dot{\theta}}_{\text {Stokes drag }}+\underbrace{\Gamma_{I}}_{\text {Inertial torque }} \\
\text { Reynolds number } R e=\frac{|\vec{w}| l}{\nu} ; \quad \text { Aspect ratio } \beta=\frac{l}{a}
\end{gathered}
$$

Rotational dynamic of anistropic particles is an open question: what model for Γ_{I} ?

- Dimensional analysis + symmetries consideration [2] [6]

$$
\Gamma_{I}=C_{I}(R e, \beta)|\vec{w}|^{2} \sin (2 \phi)
$$

- Asymptotic model [4] (Re $\rightarrow 0, \beta \rightarrow \infty)$

$$
C_{I}=\frac{5 \pi \rho_{f} l^{3}}{3(\log \beta)^{2}}
$$

3D Tracking:

- For each camera : center + line \Rightarrow plane
- 2 cameras \Rightarrow plane intersection $\Rightarrow 3 \mathrm{D}$ position
\Rightarrow Access to settling velocity \& orientation
Examples of trajectories for different B :

$\mathrm{B}=0 \mathrm{G}$		$\mathrm{B}=14 \mathrm{G}$					$\mathrm{B}=20 \mathrm{G}$				
			㚅								
$\underset{x(\mathrm{~cm})}{0}{ }^{0}$	4	-4	-2	$\underset{x(\mathrm{~cm})}{0}$	2	4	-4	-2	$\underset{x(\mathrm{~cm})}{0}$	2	4

Our idea: using magnetic particles
Apply B field on magnetic cylinders (M)

$$
\begin{equation*}
(5) \rightarrow J \ddot{\theta}=-C_{S} \dot{\theta}+\Gamma_{I}+M B \cos \theta \tag{1}
\end{equation*}
$$

- Overdamped regime + steady flow:

$$
0=\Gamma_{I}+M B \cos \theta
$$

\Rightarrow Use B to probe Γ_{I}, hence $C_{I}(R e, \beta)$

Exploring parameter space ($\beta, R e$)

- Aspect ratios, $\beta=\{5,10,15\}$
- Magnet size, $R e \in[3,45]$

Magnetic cylinders

- Handmade magnetization : heating + remagnetization
- Magnetization measurement: oscillation method [1]

$$
I \frac{d^{2} \alpha}{d t^{2}}=C \alpha+M B \sin \alpha \Rightarrow \frac{2 \pi}{T}=\sqrt{\frac{C+M B}{I}}
$$

Conclusion

- New setup and method to measure Γ_{I} and C_{I}
- Shape of Γ_{I} verify eq. (6)
- Qualitative agreement with asymptotic prediction eq. (7): C_{I} independent of Re and scales as $[\log \beta]^{-2}$ but $\frac{5 \pi}{3}$ prefactor not verified

Experimental setup

- Magnetized cylinders settling in quiescent fluid
- Glycerol diluted solution ($\left.\nu \approx 2,5 \cdot 10^{-4} \mathrm{~Pa} . \mathrm{s}^{-1}\right)$
- Constant magnetic field: $\mathbf{B}=B \mathbf{e}_{\mathbf{z}}$

Shape factor, $C_{I}(\beta, R e)$

References

[1] B. Barman. Measuring the magnetization of a permanent mag net. American Journal of Physics, 87(4):275-278, April 2019.
[2] F. Jiang. Inertial torque on a small spheroid in a stationary uniform flow. Physical Review Fluids, 6(2):024302, February 2021. Publisher: American Physical Society
[3] Jennifer Jucha. Settling and collision between small ice crystals in turbulent flows. Physical Review Fluids, 3(1):014604, January 2018. Publisher: American Physical Society
[4] R. E. Khayat and R. G. Cox. Inertia effects on the motion of long slender bodies. Journal of Fluid Mechanics, 209:435-462, December 1989.
[5] H.R. Pruppacher and J.D. Klett. Microphysics of Clouds and Precipitation, volume 18 of Atmospheric and Oceanographic Sciences Library. Springer Netherlands, Dordrecht, 2010.
[6] G. Subramanian. Inertial effects on fibre motion in simple shear flow. Journal of Fluid Mechanics, 535:383-414, July 2005. Publisher: Cambridge University Press

