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The atmospheric heat engine
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The conveyor belt
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Energetics of stratified turbulence
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Energetics of stratified turbulence

Light Active grid aser sheet \/?"'\/\ .
fluid p Odier, Chen, Ecke,
(Ethanol x
solution) PRL (2009)
T Tnclined plate )
; . ' Physics D (2012)
Motors * Dense fluid
=» it Expander [-}: L )Xg (salt water) JFM (201 4)
Water Active JFM (201 7)
pump grids
1,/ 2) _ ( 17 / 17, 7.7 )
Di(5ui”) = 0;(— o uj P + 2vuisi;—suzuzu;) + €+ P+ B
@ 20 20 ()
E 05 0.5
o LSF 15
e r g — _ UV YU PYIAY
5 10f <x 10 Of—py 0z €= 2 (83 Uy + 8zu])
§ 055 ‘ N\/Www 05 o .
>t ' \ SRR ] P=—wu 9;Ui+0:U;
7P S R R -05 : : Zr . H-0.5 - (2ad] 2
0 2 4 fem] 8 10 0 2 4 [ ]6 8 10
X |[Cm X [Cm
B=—-%pw
© 2-0E 10 @ 10 oo P
@ 1S 25 Jos
% 1of ?(5) o[ “’m/\;‘:ﬁ?’/\ 0
P [ - W : g
E [Z. o 1 |- . S
SR SIS SN S : e e -05
- A P S [ 1 Ly
t2 L SN - i i i ~1.0
0 2 4 6 8 10 0 2 4 6 8 10
X [cm] X [cm]
Mixing efficiency: local estimate
0.20
————— Mellor & Yamada (1982) / e
————— Townsend (1958) (Rig, o =1/4) =
— - — - Townsend (1958) (Rig ¢, =5/12) LT e
o TS /- . X
01sH o B S x
X Pardyjak et al. (2002) P X
& Strang & Fernando (2001) //..v' X x . e

Lewis Fry Richardson Rif
(english mathematician, physicist,
meteorologist, psychologist)

1

William Froude
(english engineer, hydrodynamicist
and naval architect)

0.10

0.05

PO

B
B+e

0.15

0.20

Odier, et al JFM (2014)

Lazﬁ
- (8:U)?



Mixing efficiency: local estimate
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Turbulent diffusion
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Shear flows: entrainement
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Walter Munk: “Abyssal recipes”

Deep-Sea Research, 1966, Vol. 13, pp. 707 10 730. Pergamon Press Ltd. Printed in Great Britan

Abyssal recipes

WALTER H. MUNK*

(Received 31 January 1966)

Abstract—Vzrtical distributions in the interior Pacific (excluding the top and bottom kilometer)
arenoti i with a simple model involving a constant upward vertical velozity wa 1-2cm day~!
and eddy diffusivity x & 1'3 cm?sec~!. Thus temperature and salinity can be fitted by exponential-
like solutions to [x - d%/dz? — w- d/d:) T, S = 0, with x/w & 1 km the appropriate * scale height."”
For Carbon 14 a decay term must be included, [ ] HC = 4 MHC; a fitting of the solution to the ob-
served MC distribution yields »/w? & 200 years for the appropriate ** scale time," and permits w and
« 10 be separately determined. Using the foregoing values, the upward flux of Radium in deep water
Munk DSR (1 966) is found to be roughly 15 x 10~ gcm=2sec~!, as compared to 3 X 10~ gcm~2?sec~! from
di ary measur by GoLoserc and Koipe (1963). Oxygen nption is computed at
0-004 (ml/1) year=!, The vertical distributions of T, S, 1*C and O: are consistent with the corresponding
south-north gradients in the deep Pacific, provided there is an average northward drift of at least a
few millimetres per second.

How can one meaningfully interpret the inferred rates of upwelling and diffusion ? The annual
freezing of 21 x 10'* g of Antarctic pack ice is associated with bottom water formation in the ratio
43 : 1, yielding an estimated 4 x 10%° g year~! of Pacific bottom water; the value w = 1-2 cm day~!
implies 6 x 10°° g year~!. [ have attempted, without much success, to interpret  from a variety of
viewpoints: from mixing along the ocean boundaries, from thermodynamic and biological processes.
and from internal tides. Following the work of Cox and SANDsTROM (1962), it is found that surface
tides are scattered by the irregular bottom into internal modes with an associated energy flux of
4 x 10-%ergs g~' sec™! (one sixth the total tidal dissipation). Such interna! modes can produce
shear instability in the Richardson sense. It is found that internal tides provide 2 marginal but not
impossible mezhanism for turbulent diffusion in the interior oceans.

Fitting T and S advection/diffusion equation
to ocean measurements
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Fig. 1 temperature and salinity as functions of depth (km) at stations Sne/lius 1930 :

#4262, 9'4l’N 126° SI’E, (closed circles) and Galathea 1951 : # 433, 9° SI'N, 126° SI'E,

(open circles). Curves labeled w/« (in units km~!) are based on equations (1) ‘and (2) for
turbulent and laminar diffusion, respectively.



Fitting radioactive elements advection/diffusion equation
to ocean measurements
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Measured diffusivities: what is going on?
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Until the processes giving rise to diffusion and advection are understood, the resulting
differential equations governing the interior distribution, and their solutions, must
remain what they have been for so long : a set of recipes.

Concluding sentence of Munk DSR (1966)
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